

Doc#: AN.MPIEC.04 Copyright Yaskawa Electric America ©2012 December 18, 2012
Page 1 of 19

Application Note

Interfacing an MPiec Series Controller with
an Android Application

Applicable Product: MPiec Series Controllers

Yaskawa Electric America
2121 Norman Drive South
Waukegan, IL 60085
1-800-927-5292

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 2 of 19

Application Overview
This document describes the process of developing an Android application to interface with an MPiec Series

Controller. It covers the following three topics:

1) Setting up the Android development environment (on Windows)

2) Creating a MotionWorks IEC program to accept communication via the YDeviceComm library

3) Establishing and testing communication and developing a basic program.

It also discusses common pitfalls and best practices.

Both the IEC and Android application code is available on www.yaskawa.com bu searching for document
number EC.MPIEC.02.

Products Used:

Component

Controller

Software

Third Party Devices

MotionWorks IEC Express or Pro

Android Device

Product and Model Number

MPiec (Any)

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 3 of 19

Implementation Method of Core Operation
The development of Android Application for communication to an MPiec Series Controller will be discussed in
two major parts:

1. Developing the Android Application
2. Developing the MPiec Application

These two parts work together using TCP communications through a network, the most basic network
configuration being represented by this diagram:

Of course this is a fairly simplified network diagram but the idea is correct. One could also connect to a
controller remotely but that would involve configuring VPN access on the Android phone.

The purpose of the demo application in this Application Note is to display the Actual Position, Actual Velocity and
Axis Alarm ID from a single axis in a Yaskawa MP2300Siec Demo Unit. The final Android application will look
like this:

MPiec
Controller

Switch Wireless
Access Point

Android
Phone

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 4 of 19

Programming: IEC Application
The core of the IEC application depends on the YDeviceComm firmware library that must be included in your
project. The YDeviceComm firmware library includes a number of function blocks that provide TCP, UDP and
serial communications. For this Application we will be using the TCP function blocks to:

 Create a listening socket (Y_CreateListeningSocket)
 Accept a connection from the listening socket (Y_AcceptConnection)
 Read from the new data socket (Y_ReadDevice)
 Write to the new data socket (Y_WriteDevice)
 Close the new data socket (Y_CloseDevice)

Making sure the data socket closes is important. If a socket is opened but not closed, then after a number of
lost connections the controller will not accept any more connections and the sockets will either have to be closed
manually in the program (not covered in this application note) or the controller must be stopped and warm
started.

The IEC application consists of 5 POUs but most of the application resides in the Communication POU. The
other POUs and their functions are:

Initialize Configure communication port, controller IP and AxisRef.AxisNum

IO Read actual Position/Velocity and Axis Status

HMI A basic “HMI” that uses contacts to enable communication, servo power and servo movement

Main Contains axis /motion related function blocks

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 5 of 19

Here is the basic layout for this process used in the example application:

This methodology allows a single connection to be opened to the controller from a requester over port 23. It is
important to note that the port number is independent of the application – you can choose the port number your
controller and Android device communicate over, however it is suggested to avoid common port numbers
associated with services like FTP, SMTP, etc. The above IEC code also handles a commanded disconnect that

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 6 of 19

ensures the current socket is closed properly. The remainder of the POU focuses on implementing:

 Read a command from the connected device
 Process a received command
 Send a data packet to the connected device

Reading from the Android device is as simple as using Y_ReadDevice, setting the Buffer to a BYTE variable and
setting Length to UDINT#1. Assuming there is data to collect, each scan this block will copy one byte from the
input stream to the Command variable. Each time this occurs, ReadCommandDone becomes true.

Now that the controller has received a command, it can process it. The suggested method of performing this is
to write a custom function block (in Structure Text) that takes the input command and triggers events using some
form of output. Because the number of commands in this application is so limited, the command processor block
has a BOOL output dedicated to each action. In more complicated input/action scenarios, it may be useful to
utilize a VAR_IN_OUT STRUCT that contains variables associated with actions. You should not use global
variables inside of your custom function block.

Another important concept used with this block is the type of coil used on the SendData and CloseDevice
outputs – SET coils. These coils are set TRUE by the CommandProcessor but will not go FALSE when the
block turns off. These coils must be reset by a RESET coil somewhere else in the POU.

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 7 of 19

Right below the CommandProcessor you can see the controller side stay-alive functionality. This TimerON
function block counts up to the specified TimeOut unless it is reset by StayAlive becoming TRUE. If StayAlive is
not set TRUE within the TimeOut then CloseDevice is set TRUE and the controller disconnects the data socket
and starts listening for a new connection. It is worth noting that the stay-alive functionality is optional to the
functionality of this application; however, it is a suggested “best practice” that helps ensure connections are
closed properly (for example, the Android application could crash or disconnect before issuing a Disconnect
command and the stay-alive functionality would ensure the MPiec controller closes that connection).

Once the Android device sends a command, it will expect a packet in response. Before this packet can be sent
by the controller, it must be prepared in some manner. This Application Note suggests putting all output values in
a structure and then packing that structure in to an array of BYTEs. This is performed by using the PROCONOS
firmware library function blocks *_TO_BUF. As mentioned in the Endian section below, when communicating
with a device using Java (or any device in which the target Endianness is not known) the *_TO_BUF
BUF_FORMAT must be set TRUE to pack the bytes in Big Endian format (a.k.a. Network Byte Order).

For this application, three output values are sent:

 Actual Position (REAL)
 Actual Velocity (REAL)
 Alarm ID (UINT)

Thus, two REAL_TO_BUF blocks and one UINT_TO_BUF block is required. Once all three values have been
packed in to the dataBuffer, buf_ready is set TRUE and the packet can be sent.

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 8 of 19

Finally, the controller is ready to send the data packet to the Android device. This is done using the
Y_WriteDevice function block. Set the Buffer to dataBuffer and Length to UDINT#0 which will cause the block
to send the entire length of the dataBuffer.

This same sort of communication methodology can be expanded and enhanced to receive and send significantly
more complicated packet structures allowing large amounts of control and data gathering with a fairly simple set
of function blocks and a custom command processing function block.

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 9 of 19

Testing IEC Application

Before continuing on to write the Android application it is a good idea to test the IEC app functionality. This can
be done by using any program capable of acting as a TCP client. The example below was performed using
Hercules, a HW Group program freely available:

http://www.hw-group.com/products/hercules/index_en.html

There are only three commands in this application, Stay Alive (0x01), Get Data (0x28) and Close Connection
(0x63). To test your application:

1. Enter the IP address of a controller on which it is running (with port set to 23)

2. Make sure that communications are enabled in the HMI and that the servo is enabled

3. Click connect

4. Send 0x2801 (for Get Data, Stay Alive) a few times and then send 0x63 to close the connection

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 10 of 19

The resulting Hercules output should look like:

Breaking down one line of this communication you can see:

{28}{01} {00}{00}{00}{00} {40}{88}{D9}{A0} {00}{51}

Get Data, Stay Alive Velocity Position Drive Alarm

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 11 of 19

Checking the web server for our controller, there is an A.51 alarm (axis overspeed) which matches the output
from the controller.

Configuring the Android Development Environment
There are two main methods of developing Android Applications in a Windows environment: command line and
Integrated Development Environment (IDE). The IDE method is an all-in-one solution that allows you to write,
build and test code in a single application while the command line method involves writing the code in one
application and building the code using command line tools. This Application Note will demonstrate the
command line methodology; however, using the Eclipse IDE may be easier to those familiar developing with an
IDE or with little to no experience in command line development.

Configuring the command line: http://developer.android.com/tools/projects/projects-cmdline.html
Configuring Eclipse IDE: http://developer.android.com/sdk/index.html#ExistingIDE
Using Eclipse: http://coding.smashingmagazine.com/2011/11/04/getting-the-best-out-of-eclipse-for-android-development/

Both the IEC and Android application code is available on www.yaskawa.com by searching for document
number EC.MPIEC.02.

To start, the developer needs to acquire:

 Java JDK
 Android SDK
 Apache Ant
 At least 1 Android Target
 All of the above configured to run on his/her system

Configuring the command line development environment is outside of the scope of this Application Note but
there a number of tutorials online describing how to do so for your system configuration.

Once the environment is configured the developer can move on to creating his/her first project. From here most
steps will be either performed in the Windows DOS prompt (“command line”) or in a text editor (“editor” –
notepad, wordpad, Notepad++, etc.). The first step is to create the project using this command:

android create project --target 1 --name DemoApp --path DemoApp --activity demo_app
--package com.yaskawa.demoapp

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 12 of 19

where target is the ID associated with your installed Android target. To get a list of targets you can type the
command:

android list targets

which should output a list or targets, a sample of which looks like:

Available Android targets:

id: 1 or "android-16"
 Name: Android 4.1
 Type: Platform
 API level: 16
 Revision: 2
 Skins: HVGA, QVGA, WQVGA400, WQVGA432, WSVGA, WVGA800 (default), WVGA854, WXGA720,
WXGA800, WXGA800-7in
 ABIs : armeabi-v7a

The name is the name of your application as it will be viewed on your device, the path is the location in your file
system where the project will be stored (in this example, the path is a folder named “DemoApp” which means
that prior to typing this command the cd command was used to change directory to the directory containing
“DemoApp”), the activity is the name of the main activity that will run in your application and the package is a
namespace for your application within the Java environment (so you can change “yaskawa” to “yourcompany” or
whatever you like).

Now that the project is created, there are a number of new files in the directory you specified which must be
modified to created the demo application for this Application Note. The first file that needs to be modified is
“AndroidManifest.xml” which is in the top level of the application folder. Only one line must be added:

<uses-permission android:name="android.permission.INTERNET"/>

Place it below the <application> close tag. This tag allows your app to utilize the internet capabilities of the
device which is necessary to connect to an MPiec controller over Wi-Fi.

Programming: Android Application

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 13 of 19

To load the application on to your device at any point, follow these steps:

1. Make sure that you changed your working directory in the command prompt to the “DemoApp” folder (or
whatever you named it) or else the following command will fail:

ant debug

2. Once that command completes and says BUILD COMPLETE your application is ready to load on to your
phone. If you will be loading applications using USB, make sure that your phone has “USB Debugging”
enabled and is plugged in to your computer. If this is the only Android device attached to your
computer, then you are ready to issue this command:

adb install -r bin/demoapp-debug.apk

3. If you named the application something different than “DemoApp” you can see what file you need to load

by changing to the “bin/” directory and issuing the dir command looking for the file named similar to the
one above (i.e. “[application_name]-debug.apk”).

There should now be an application on your phone named whatever you used as the application name and when
you click on its icon an app should open with the default application layout.

The actual Java code will not be discussed in depth in this Application Note as it is outside of the scope.
However, the methodology employed in the app will be discussed below.

The Android Application being developed only has one main function which is to collect data from the controller
and display it to the user. In order to this, there are three auxiliary functions which must exist for the main
function to occur. Two of these functions are related – Connect() and Disconnect(). The third function serves
as an assistant to the first function which is KeepAlive(). While the Android Application is connected to the
controller, it will issue a KeepAlive() command at a set interval so that the controller knows the Android
Application is still connected – otherwise the controller closes the connection (this prevents connections from
being left open if something goes wrong on the Android side and it is unable to issue a Disconnect()). As
mentioned in the IEC programming section, the KeepAlive() function is optional and not necessary for a
functioning application. The main function, GetData(), also operates at a fixed interval in which it sends a
request for a data packet and processes the response and displays it to the user.

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 14 of 19

Establish a connection with the controller
by opening a socket on port 23

Issue a request for DATA Receive and Process DATA

Issue Stay Alive command

Close connection by issuing Disconnect
command

A diagram of this methodology can be seen here:

With this simple methodology, much more complex applications can be written simply by expanding the amount
and type of the data received and performing additional processing to deliver that content to the user. In addition,
the function used to request DATA can also be used to issue a different command (either cyclically or event
based) which could then either expect a different response or cause an event on the controller (such as clearing
alarms, enabling/jogging servos, restarting the machine, etc.).

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 15 of 19

The Importance of Endianness

Endianness describes the byte order of multi-byte datatypes (e.g. ints, reals, etc.). There are two types of
Endianness that we are concerned about: Little Endian and Big Endian. Big Endian means that the most
significant byte is the first byte whereas Little Endian means the least significant byte is the first byte. This is
easiest to see with an example. Say you want to store the integer value 1000. In hexadecimal this is 0x03E8.
Here is a comparison of how this would be stored in memory of the two different types of Endianness:

Integer Value 0x03E8
Little Endian 0xE8 0x03
Big Endian 0x03 0xE8

So, it’s pretty clear what the difference is between the two types. Now, where does this come in to play in IEC
to Android communications? The answer is that MP2300iec controllers are Little Endian while Android
Applications are Big Endian (note: Android Applications are Big Endian because Java, a Sun product, always
assumes data is Big Endian – the actual processor may be Little or Big Endian).

This is very important to know because if you don’t account for Endianness in your application then your data
may end up backwards. Thus, when you send data from the MPiec controller to the Android Application the byte
order (endianness) of the data must be changed. How do you do that? You can specify output byte order by
setting the input parameter BUF_FORMAT of *_TO_BUF to TRUE.

MP2300Siec
Little Endian

Android Phone
Big Endian (Java)

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 16 of 19

Setting BUF_FORMAT to TRUE will ensure that the Android App properly interprets the input

So how does this relate to the Android Application? This concept becomes very important when receiving the
information from the Controller. If the Controller’s output is configured using the methodology employed above
then parsing the packet sent by the Controller should be as easy as:

velocity = input_stream.readFloat();
position = input_stream.readFloat();
alarm = input_stream.readShort();

The DataInputStream and InputStreamReader classes in Java expect (like all of Java) Big Endian format
which means that the functions above will read, from the InputStream, the number of bytes specified by the data
type, Big Endian format. For reference, here are the Java primitive data types and their respective sizes:

Type Size

byte 1

short 2

int 4

long 8

float 4

double 8

char 2

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 17 of 19

Further determination of what Java data type is correct for your input data involves determining sign and if there
is any padding in your packet.

Testing the Android Application

Testing the Android application will involve using Hercules TCP server functionality. To perform this test you
will need your computer’s IP address and connect your Android phone on the network your as the computer. If
you don’t know your computer’s IP address, go to the command line and issue ipconfig and look for the IP
address associated with whichever method you are connected to your network through (Ethernet or Wireless).
Enter this IP address in to the Android app, click “Listen” in Hercules on the TCP Server page and click “connect”
in the Android app.

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 18 of 19

The result in Hercules should look something like this:

If you want to test the receiving portion of the Android application you can use the “Send” box pictured (make
sure HEX is checked) and send 10 byes (therefore 20 individual hexadecimal digits). Unless you know how
32-bit floating point numbers are represented in hexadecimal you will either need to use a decimal to
hexadecimal online conversion application or just enter all 0’s for the two REAL values. You can, however, use

Subject: Application Note Product: MPiec Doc#: AN.MPIEC.04

Title: Interfacing an MPiec Series Controller with an Android Application

 December 18, 2012 Page 19 of 19

the last 2 bytes to test different values (since the result is predictable as the input is of type UINT).

Final Testing

The last thing to test is actually connecting the Android application to the MPiec controller. If testing was
successful for the individual components then testing should be just as successful. Simply enter the controller
IP on the android application and click “connect” and the data fields in the application should be filled (and
fluctuating if the servo is moving). If the values appear to be reversed (or the REALs are gigantic numbers) then
you may have an endian issue and will want to review that section.

